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Maps of Papillomavirus mRNA Transcripts

Carl Bakera and Charles Calefb

 a Laboratory for Tumor Virus Biology,National Cancer Institute, National Institutes of Health,Bethesda,
Maryland 20892-5055
 b MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Explanation of Maps

 Maps showing the open reading frames and mRNA transcripts of seven papillomaviruses are
presented on the following pages. Facing each map is a brief description of the transcripts, and following
the maps is a list of references from which the maps were compiled. In each map the significant ORFs
are shown in their proper reading frames as colored rectangles. At the upper left end of the rectangle are
two numbers. The first corresponds to the nucleotide (nt) position of the ORF start, the first nucleotide
following a stop codon. The second number records the nt position of the first ATG, which is also
indicated by a dotted line within the rectangle. The position of the last nt in the stop codon of each ORF
is printed at the lower right corner of the rectangles. The rectangle's colored fill begins at the ATG and
extends to the end; thus it corresponds to the coding sequence, not the entire ORF. In the cases where no
ATG exists in the ORF, only one number is present in the upper left corner and the rectangle is completely
filled with color. Below the ORFs is a scale of the genome divided into thousands. On the scale are placed
the positions of promotors (represented by arrows) and the poly(A) signals. The exact position of the
poly(A) signal is printed below the scale line. Located below the genome scale are diagrams of mRNA
species, most of which are spliced. The exons are illustrated by heavy black lines, while the introns are
indicated by black hairlines between. The numbers printed below the lines indicate the 5' and 3' termini
of the RNAs, and the 5' and 3' splice junction positions. The splice junction numbers give the position of
the last nucleotide in the exon before the splice and the position of the first nucleotide of the exon
following the splice. Splice junctions in parentheses were deduced from the genomic sequence and have
not been confirmed by cDNA sequencing. Where 5' or 3' ends of the RNAs are uncertain, no nt position
is given. Superimposed on the exons are colored rectangles representing the gene, or part thereof, coded
by that portion of the exon. The coding potential of each transcript is also listed at the right. In that list
a ^ symbol between two gene name (e.g. E1^E4) indicates a fusion product. The * symbol indicates
different forms of the E6 product.
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BPV-1 has served as the prototype for the genetic analysis of the papillomaviruses. The mRNAs
from BPV-1 transformed C127 cells as well as productively infected bovine fibropapillomas have been
exhaustively analyzed. The top of the BPV-1 map shows the genomic organization of BPV-1. The long
control region is labelled and, in order to show the position of promoters, is repeated to the left of nt 0.
The locations of known promoters [3,6,23,24,27] are indicated by arrows and labeled Pn where n is the
approximate nucleotide position of the RNA start site for that promoter. P7185, P89, P890, P2443, and P3080
are also referred to as P1, P2, P3, P4, and P5 [6,23], respectively. The late promoter (PL) is the major
promoter active in the fibropapilloma and is the only promoter not active in C127 cells transformed by
BPV-1 [3]. The early and late polyadenylation signals are at nt 4180 and 7156, respectively. The structures
of BPV-1 mRNAs from BPV-1 transformed mouse C127 cells (species A—Q) were determined by
cDNA cloning as well as electron microscopy, nuclease protection, PCR, and primer extension. The 5'
most ORF containing a translation initiation codon and a significant coding region is indicated at the right
of each mRNA. Although an E6/E7 fusion ORF is the 5' most ORF for species I, the cDNA from which
this structure was deduced has been shown to encode the E1 M protein [26].

 Additional very rare mRNA species from cycloheximide treated BPV-1 transformed C127 cells
have been characterized [6], but are not shown here. The structures of mRNAs unique to the BPV-1
fibropapilloma (species R–X) were determined by RT-PCR and cDNA cloning and sequencing [3,4].
Although the E2 and E4 ORFs are the first significant ORF for species W and X, these mRNAs may also
encode the L2 protein. A more detailed discussion of BPV-1 transcription can be found elsewhere,
including references for each mRNA [1,2].
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HPV-16 mRNAs isolated from transfected cells and a variety of tumor cell lines and lesions
containing both extrachromosomal and integrated HPV-16 genomes have been analyzed in multiple
laboratories [8,15,18-20]. Viral/host chimeric mRNAs have been purposely omitted. All nucleotide
positions correspond to the revised HPV-16 sequence published in Part I of this compendium. Most
mRNA species were determined by RT-PCR, so the identity of the 5' and 3' ends are not known. However,
only one promoter (P97) has been definitively identified for HPV-16 [22]. Species A-K are most likely
transcribed from this promoter. The promoter responsible for the transcription of the late mRNAs (species
O-P) is not known. The early and late polyadenylation signals are located at nt 4215 and nt 7321,
respectively [11,15].
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HPV-31 mRNAs were investigated in CIN62 cells grown in monolayer cultures and in organotypic
raft cultures [9,14]. CIN612 cells contain extrachromosomal HPV-31. Two promoters were identified by
primer extension and RNAse protection experiments. P97 is active in both monolayer and raft cultures;
P742 is active only in differentiated raft cultures [9]. No promoter could be identified in the E6 ORF [9].
The mRNA structures identified are shown in the facing map. Species A and B are presumably transcribed
from P97. Species C, D, and presumably E are transcribed from P742. Additional L1 mRNAs appear to be
transcribed from P97, but the exact splice structure of these mRNAs is unknown. Early mRNAs were
polyadenylated between nt 4099 and 4125 [9]. The exact sites of polyadenylation at the late poly(A) site
were not determined in these studies, but a putative polyadenylation signal exists at nt 7227.
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HPV-11 mRNAs, isolated from genital condyloma acuminata and experimental condylomatous
cysts implanted under the renal capules of nude mice, have been analyzed by several laboratories
[5,7,13,16,17]. The types of analyses include cDNA cloning (species A), electron microscopy analysis
of R-loops (species A–G, J–K), and RT-PCR analysis (species C–F, H–J). The deduced mRNA structures
are shown in the HPV-11 map. The 5' ends of individual mRNAs have not been mapped at the nucleotide
level. However, three promoters have been mapped by Smotkin et al. [21] using nuclease S1 analysis: the
E6 promoter initiates at nt 90, the E7 promoter at nt 264, and the E1 promoter at nts 674–714. The 5' end
of the cDNA representing species A is located at nt 716 [13], so this mRNA is presumably transcribed
from the E1 promoter. The early poly(A) site has been identified from analysis of species A cDNAs [13].
The late poly(A) site has not been identified experimentally, but the L1 and L2 mRNAs are presumably
polyadenylated utilizing the poly(A) signal at nt 7457.
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HPV-5 mRNAs isolated from benign skin lesions from patients with epidermodysplasia verruciformis
were analyzed by RT-PCR (Haller, Stubenrauch, and Pfister, Virology, in press). The 5' and 3' ends of
these mRNAs are unknown. However, in situ hybridization data as well as promoter mapping data for
the related virus HPV-8 suggest that four promoters may exist, a late promoter in the LCR, an E6
promoter, an E7 promoter, and an E1 promoter similar to that identified for HPV-31 [9]. Species A–D
are most likely transcribed by the late promoter and species E–F by the E6 promoter. The early and late
poly(A) sites have not been experimentally determined. However, by analogy with the related virus HPV-
47 [12], the early poly(A) signal is at nt 4438. Species A–B and E–G are most likely polyadenylated at
the early poly(A) site, while species C–D and H–I at the late poly(A) site.
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HPV-8 mRNAs have been investigated from both transfected cells and lesions from an
epidermodysplasia verruciformis patient. Analysis of RNA start sites suggest at least three promoters: a
late promoter in the LCR with start site at nt 7535 (P7535) [25], an E6 promoter with start sites at nt 175–
179 (P175) [10,25], and an E7 promoter with start site just upstream of the E7 ORF (not further mapped
[10]). RT-PCR analysis of RNA from the EV lesion [25] identified two L1 mRNAs which presumably
are transcribed from the late promoter. The exact 5' and 3' ends of these mRNAs have not been determined,
however.
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Analysis of mRNA from an HPV-47 transformed rat cell line using S1 and primer extension
analysis revealed RNA start sites at nt 183–202 with a major start site at nt 198 [12]. The early poly(A)
sites were mapped to nt 4444 and nt 4465 by cDNA cloning and sequencing. Three RNA structures were
determined using cDNA cloning coupled with S1 analysis. Species A is the most abundant mRNA. Only
one clone was identified for species B and C mRNAs. The 5' end of the cDNA insert for the species B
clone was at an EcoRI site which was used for cloning the cDNA, so the actual cDNA may have extended
further upstream.
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